blog post

New Acoustic Attack Steals Data from Keystrokes With 95% Accuracy

A team of researchers from British universities has trained a deep learning model that can steal data from keyboard keystrokes recorded using a microphone with an accuracy of 95%.

When Zoom was used for training the sound classification algorithm, the prediction accuracy dropped to 93%, which is still dangerously high, and a record for that medium.

Such an attack severely affects the target’s data security, as it could leak people’s passwords, discussions, messages, or other sensitive information to malicious third parties.

Moreover, contrary to other side-channel attacks that require special conditions and are subject to data rate and distance limitations, acoustic attacks have become much simpler due to the abundance of microphone-bearing devices that can achieve high-quality audio captures.

This, combined with the rapid advancements in machine learning, makes sound-based side-channel attacks feasible and a lot more dangerous than previously anticipated.

Listening to keystrokes          

The first step of the attack is to record keystrokes on the target’s keyboard, as that data is required for training the prediction algorithm. This can be achieved via a nearby microphone or the target’s phone that might have been infected by malware that has access to its microphone.

Alternatively, keystrokes can be recorded through a Zoom call where a rogue meeting participant makes correlations between messages typed by the target and their sound recording.

The researchers gathered training data by pressing 36 keys on a modern MacBook Pro 25 times each and recording the sound produced by each press.

Possible mitigations

For users who are overly worried about acoustic side-channel attacks, the paper suggests that they may try altering typing styles or using randomized passwords.

Other potential defense measures include using software to reproduce keystroke sounds, white noise, or software-based keystroke audio filters.

Remember, the attack model proved highly effective even against a very silent keyboard, so adding sound dampeners on mechanical keyboards or switching to membrane-based keyboards is unlikely to help.

Ultimately, employing biometric authentication where feasible, and utilizing password managers to circumvent the need to input sensitive information manually, also serve as mitigating factors.

Author

Steve King

Managing Director, CyberEd

King, an experienced cybersecurity professional, has served in senior leadership roles in technology development for the past 20 years. He has founded nine startups, including Endymion Systems and seeCommerce. He has held leadership roles in marketing and product development, operating as CEO, CTO and CISO for several startups, including Netswitch Technology Management. He also served as CIO for Memorex and was the co-founder of the Cambridge Systems Group.

 

Get In Touch!

Leave your details and we will get back to you.